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ABSTRACT: Equilibrium formally can be represented as an ensemble of uncoupled
systems undergoing unbiased dynamics in which detailed balance is maintained. Many
nonequilibrium processes can be described by suitable subsets of the equilibrium ensemble.
Here, we employ the “weighted ensemble” (WE) simulation protocol [Huber and Kim,
Biophys. J. 1996, 70, 97−110] to generate equilibrium trajectory ensembles and extract
nonequilibrium subsets for computing kinetic quantities. States do not need to be chosen
in advance. The procedure formally allows estimation of kinetic rates between arbitrary
states chosen after the simulation, along with their equilibrium populations. We also
describe a related history-dependent matrix procedure for estimating equilibrium and
nonequilibrium observables when phase space has been divided into arbitrary non-
Markovian regions, whether in WE or ordinary simulation. In this proof-of-principle study, these methods are successfully applied
and validated on two molecular systems: explicitly solvated methane association and the implicitly solvated Ala4 peptide. We
comment on challenges remaining in WE calculations.

1. INTRODUCTION

Although it is textbook knowledge that the functions of
biomacromolecules are strongly coupled to their conforma-
tional motions and fluctuations,1 computer simulation of such
motions has been a challenge for decades.2 Typically, distinct
algorithms are employed to estimate equilibrium quantities
(e.g., refs 3 and 4) and dynamical properties (e.g., refs 5−10).
In principle, a single long dynamics trajectory would be
sufficient to determine both equilibrium and dynamical
properties,11 but such simulations remain impractical for most
systems of interest.
Aside from straightforward simulations, more technical

approaches that can yield both equilibrium and dynamical
simulation, sometimes under minor assumptions, have drawn
increasing attention. A number of approaches employ Markov
state models (MSMs) as part their overall computational
strategy. On the basis of replica exchange molecular dynamics
(REMD),12,13 it is possible to extract kinetic information from
continuous trajectory segments between exchanges and thereby
construct an MSM.13 The adaptive seeding method (ASM)
similarly builds an MSM based on trajectories seeded from
states discovered via REMD or another of the so-called
generalized ensemble (GE) algorithms.14 MSMs have also been
used in combination with short, off-equilibrium simulations to
construct the equilibrium ensemble of folding pathways of a
protein.15

Another general strategy is to employ a series of non-
intersecting interfaces that interpolate between states of interest
selected in advance. Milestoning generates and analyzes
transitions between interfaces assuming prior history does not
affect the distribution of trajectories.16,17 Transition interface
sampling (TIS)18,19 and its variants also analyze such
transitions and can yield free energy barriers in addition to
rates while accounting for some history information.20 Forward
flux sampling (FFS) again samples interface transitions: it
accounts for history information and can yield rates and
equilibrium information.7,21

The “weighted ensemble” (WE) simulation strategy5 (see
Figure 1), which has a rigorous basis as a path-sampling
method,22 has also been suggested as an approach for
computation of both equilibrium and nonequilibrium proper-
ties.23,24 Although WE was originally developed as a tool for
characterizing nonequilibrium dynamical pathways and rates
(e.g., refs 5, 25−28), the strategy was extended to steady-state
conditions including equilibrium.23 The simultaneous compu-
tation of equilibrium and kinetic properties using WE was
demonstrated with configuration space separated into two
states by a dividing surface24 and later for arbitrary states
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defined in advance of a simulation.29 In contrast to many other
advanced sampling strategies, WE generates an ensemble of
continuous trajectories, all at the physical condition (e.g.,
temperature) of interest.
Here, we further develop the capability of WE simulation to

calculate equilibrium and nonequilibrium quantities simulta-
neously in several ways that may be important for future studies
of increasingly complex systems. (i) The approach described
below permits the calculation of rates between arbitrary states,
which can be defined af ter a simulation has been completed. In
a complex system, the most important physical states, including
intermediates, generally will not be obvious prior to simulation.
Further, the present approach opens up the possibility to use
rate calculations to aid in the state-definition process. (ii) The
non-Markovian analysis described here enables unbiased rate
calculations in the typical case where “bins” used by WE
simulation do not exhibit Markovian behavior. The analysis is
general and can be applied outside the WE context, including
the analysis of ordinary long trajectories. (iii) The non-
Markovian analysis can improve the efficiency of WE
simulations by yielding accurate estimates of observables from
shorter simulations. The analysis is based on a previously
suggested decomposition of the equilibrium ensemble into two
nonequilibrium steady states.9,20,21,30,31

Generally speaking, WE provides an attractive basis for
complex simulations. WE is easily parallelizable because it
employs multiple trajectories and was recently used with 3500
cores.32 Because there is no need to “catch” trajectories at
precise transition interfaces, WE algorithms lend themselves to
a scripting-like implementation which has been employed to
study a wide range of stochastic systems via regular molecular
dynamics,28 Monte Carlo,26 the string strategy,33 and Gillespie-
algorithm dynamics of chemical kinetic networks.34

2. THEORETICAL FORMULATION
WE simulation uses multiple simultaneous trajectories, with
weights that sum to one, that are occasionally coupled by
replication or combination events every τ units of time.5 The
coupling events typically are governed by a static partition of
configuration space into “bins” (Figure 1c), although
dynamical/adaptive bins may be used.22 In the case of static
bins, when one or more trajectories enters an unoccupied bin,
those trajectories are replicated so that their count conforms to
a (typically) preset value, M. Replicated “daughter” trajectories
inherit equal shares of the parent’s weight. If more than M
trajectories are found to occupy a bin, trajectories are combined
statistically in a pairwise fashion until M remain, with weight
from pruned trajectories assigned to others in the same bin.

These procedures are carried out in such a way that dynamics
remain statistically unbiased.22 This study does not adjust
weights according to previously developed reweighting
procedures23 during the simulation. Rather, the WE simulations
described here are long enough to permit relaxation to the
equilibrium state.

2.1. Direct Calculation of Observables. Once the
equilibrium state is reached in a WE simulation, meaning that
there is a detailed balance of probability flow between any two
states, equilibrium observables such as state populations or a
potential of mean force can be calculated simply by summing
trajectory weights in the corresponding regions of phase space.
We term this “direct” estimation of observables.
To calculate rates, the equilibrium set of trajectories (Figure

1a) is decomposed into two steady states as shown in Figure
1b: the α steady state consisting of trajectories more recently in
A than B, and the β steady state with those most recently in
B;9,31 these were denoted “AB” and “BA” steady states,
respectively, in ref 31. Trajectories are “labeled” according to
the last state visited, i.e., classified as α or β, during a WE
simulation or in a postsimulation analysis (“post-analysis”). The
direct rate kAB estimate is computed from the probability
arriving at the final state4,7,9,20,23,35 via

α
α

=
→

= → |
k

p
1

MFPT(A B)
Flux(A B )

( )AB
(1)

where MFPT is the mean-first-passage time, Flux(A → B|α) is
the probability per unit time arriving at state B in the α steady
state, and p(α) is the total probability in the α steady state. By
construction p(α) + p(β) = 1. Normalizing by p(α) effectively
excludes the reverse steady state, and the rate calculation only
“sees” the unidirectional α steady state as in ref 23. An
expression analogous to eq 1 applies for kBA. Also note that the
effective first order rate constant, defined by Flux(A → B|α)/
pA
eq, can be determined from equilibrium WE simulation
because PA

eq can be directly computed by summing weights in A.
We note that analogous direct calculation of observables can

be performed from an equilibrium ensemble of unweighted
(i.e., “brute force”) trajectories by assigning equal weights to
each.

2.2. Non-Markovian Matrix Calculation of Observ-
ables. Beyond the direct estimates of observables based on
trajectory weights, we also generalize previous matrix
formulations for nonequilibrium steady states9,30,36 into an
equilibrium formulation that explicitly accounts for the
embedded steady states (as in Figure 1b,c). These non-
Markovian matrix estimates are tested below and may prove

Figure 1. Equilibrium in different representations. (a) Ensemble of trajectories with arrow tips indicating the instantaneous configuration and tails
showing recent history in the space of two schematic coordinates q1 and q2. States A and B, shown in gray, are two arbitrary regions of phase space.
(b) Dissection into two subsets based on whether a trajectory was most recently in state A (black solid arrows, the “α” steady state) or state B (red
dashed, the “β” steady state). (c) Statistically equivalent ensemble of weighted trajectories, with arrow thickness suggesting weight. Configuration
space has been divided into cells (“bins”) which each containing an equal number of trajectories.
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important for future WE studies using shorter simulations, as
described in the Discussion.
Our matrix approach explicitly uses the decomposition of the

equilibrium population into α and β components for each bin i:

= +α βp p pi i i
eq

(2)

which implies p(α) = ∑ipi
α and p(β) = ∑ipi

β. We called this a
“labeled” analysis. Thus, with N bins, a set of 2N probabilities is
required rather than N. Similarly, a 2N × 2N rate matrix is
required: kij

μv, where μ and ν can be either the α or β subsets of
trajectories. See Figure 2. Each of the previously considered kij
rate elements is thus decomposed into four history-dependent
elements which account for whether the particular trajectory
was last in state A or B and whether the trajectory transitions
between the α and β subsets. The analysis assumes states
consist strictly of one or more bins, but this is always possible in
a post-analysis without a loss of generality. In other words,
given the flexibility we have when we define the bins, it is not a
real limitation that the states have to be strictly constituted by
bins.
We wish to emphasize that this analysis is “non-Markovian”

because we are explicitly including history information (i.e., α
and β labels) in the new 2N × 2N rate matrix. Once the matrix
is built, the steady state observables are obtained using the same
mathematical formalism that would be used in a regular Markov
model. However, the matrix should be seen as a tool of linear
algebra and not as embodying any physical assumptions.
Note that more than half the kij

μv elements are zero. For
example, consider a bin in the “intermediate” region (neither A
nor B), such as bin 2 in Figure 2. In this region, an α trajectory
cannot change into a β trajectory, nor vice versa; hence rates for
these processes are zero. Similarly, an α trajectory in the
intermediate region which enters a bin in B must turn into a β
trajectory, so the rate will always be zero to the α components
of bins in B.
The non-Markovian results below stem from the division

into α and β steady states, but several steps are required.
First, rates among bins are estimated in a post-analysis as

ω

ω
=

⟨ ⟩
⟨ ⟩

μν
μν

μkij
ij

i

2

(3)

where ωij
μν is the probability flux, for a given iteration, from bin i

to j of trajectories only with initial and final “labels” μ and ν,

respectively, while ωi
μ is the population labeled as μ which is

initially in i. The subscript “2” in the numerator indicates that
the rate kij

μv is estimated to be nonzero only when more than
one transition is observed; after the second event, all events are
included, from the first one, to avoid bias. The requirement for
two transitions was found to greatly enhance numerical stability
in estimating fluxes and rates between macroscopic states: rates
estimated from single events exhibit large fluctuations.
Notice that eq 3 is a ratio of averages and differs from the

average ratio ⟨ωij
μν/ωi

μ⟩, which might seem equally or more
“natural.” However, our data show that eq 3 yields unbiased
estimates, while the average ratio may not (data not shown).
The difference between the two estimators indicates that
transitions are correlated with trajectory weights. Perhaps more
importantly, the average ratio places less importance on high
weight transitions due to the instantaneous normalizationand
so, in a time-average sense, may be incorrect. That is, low-
weight transitions count as heavily as high-weight events, which
evidently biases the rate estimate. In the ratio of averages, high-
weight events appropriately count more.
To obtain “macroscopic” rates between states consisting of

arbitrary sets of bins (noting that arbitrary bins can be
employed in a post-analysis), we calculate “labeled” fluxes for
use in eq 1 via

α

β

→ | = ∑

→ | = ∑

α αβ

β βα

p k

p k

Flux(A B )

Flux(B A )
i j i ij

i j i ij

,

, (4)

The labeled bin populations pi
α and pi

β are obtained from the
steady-state solution of the labeled rate matrix K = {kij

μν}.
A summary of the “labeled” or non-Markovian matrix

procedure for estimating rates between arbitrary states is as
follows. First, we obtain the labeled rate matrix K = {kij

μv} using
eq 3 to average interbin transitions. Second, we solve the matrix
problem KTpSS = pSS, yielding the steady state solution pSS.
Notice that the equilibrium bin populations can be computed by
eq 2. Then, the steady state solution pSS along with the labeled
rate matrix elements are used to calculate the α flux entering
state B and the β flux entering A (eq 4). Finally, the MFPT
values are obtained from eq 1. In the graphs below, each non-
Markovian estimate shown is from the matrix solution using the
kij
μν rates calculated based on all data obtained until the given
iteration of the simulation.

Figure 2. Constructing a labeled rate matrix for unbiased calculations. For purposes of illustration, here state A consists solely of bin 1 and state B
solely of bin 3. Left: A traditional rate matrix with history-blind elements. The rate kij gives the conditional probability for transitioning from bin i to
bin j in a fixed time increment, regardless of previous history. Right: The labeled rate matrix accounting for history. The element kij

μv is the
conditional probability for the i to j transition for trajectories initially in the μ subensemble which transition to the ν subensemble, where μ and ν are
either α or β. The labeled rate matrix correctly assigns the α and β subpopulations of each bin, whereas the traditional matrix may not.
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The non-Markovian matrix formulation exhibits a number of
desirable properties: (i) Unlike with unlabeled (i.e., implicitly
Markovian) analysis, kinetic properties will be unbiased as
shown below. (ii) Solution of both the α and β steady states is
performed simultaneously via a standard Markov-state-like
analysis of the kij

μν rate matrix. By contrast, if the α and β steady
states are independently solved within a Markov formalism,
there can be substantial ambiguity in how to assign feedback
from the target to initial state when the initial state consists of
more than one bin. (iii) The labeled formulation guarantees, by
construction, the flux balance intrinsic to equilibrium, namely,
Flux(A → B|α) = Flux(B → A|β). (iv) The analysis can be
performed using arbitrary bins (and states defined as sets of
these bins). It is not necessary to employ the bins originally
used to run the WE simulation because a post-analysis can
calculate rates among any regions of configuration space. (v)
The analysis is equally applicable to ordinary brute-force
simulations.
2.3. Markovian Matrix Calculation of Observables. For

reference, we also perform a traditional Markov analysis of the
trajectories, which will prove to yield biased rate estimates
because most divisions of configuration space (e.g., WE bins)
are not true Markovian states.
The Markov analysis proceeds without labeling the

trajectories. Elements of the rate matrix are estimated as

= ⟨ ⟩ ⟨ ⟩k w w/ij ij i2 (5)

where the subscript “2” again means that we only estimate a
rate as nonzero once at least two transitions from i to j have
occurred. Bin populations are then computed by solving for the
steady-state solution of the Markov matrix with elements kij.
The computation of an MFPT requires the use of source (A)

and sink (B) states. This task is automatically performed within
the labeled formalism previously described. Hence, we
determine Markovian macroscopic rates by substituting the
Markovian kij for all nonzero elements of the kij

μν. We emphasize
that this is merely an accounting trick to establish sources and
sinks and simultaneously measure both A-to-B and B-to-A
fluxes/rates.
We perform a smoothing operation on the macroscopic

Markovian rates because otherwise the data are fairly noisy. The
MFPT results shown for the Markovian matrix analysis are
running averages based on the last 50% of the estimates (where
each estimate is from the matrix solution using kij estimates
from all data obtained until the particular iteration). We
confirmed numerically that such smoothing did not contribute
bias to any of the MFPT estimates.

3. MODEL SYSTEMS AND SIMULATION DETAILS

Weighted ensemble simulations were performed on two
systems: the alanine tetrapeptide (Ala4) solvated implicitly
and a pair of explicitly solvated methane molecules. All
simulations were performed at 300 K with a stochastic
thermostat (Langevin thermostat). Friction constants of 5.0
and 1.0 ps−1 were used for Ala4 and methane systems,
respectively. The molecular dynamics time step used for all
systems was Δt = 2 fs. An iteration is defined to be the
simultaneous propagation of all trajectories in the ensemble for
some amount of time, τ. In these studies, a value of τ = 2500Δt
is used for Ala4 and τ = 250Δt for the methane−methane
system.

For Ala4, the all-atom AMBER ff99SB force field37 with
implicit GB/SA solvent and no cutoff for the evaluation of
nonbonded interactions was simulated using the AMBER 11
software package.38 The Hawkins, Cramer, and Truhlar39,40

pairwise generalized Born model is used, with parameters
described by Tsui and Case41 (option igb=1 in AMBER 11
input file). The progress coordinates were selected and
“binned” using a 10 × 10 partition of a 2D space. A dihedral
distance D = ((1/N)∑idi

2)1/2 ∈ [0,180] with respect to a
reference set of torsions is used in the first dimension, where N
is the number of torsional angles considered and di is the
circular distance between the current value of the ith angle and
our reference, i.e., the smaller of the two arclengths along the
circumference. This dimension was divided every 14° from 0 to
126° and then a final partition covering the space (126,180]).
In the second dimension, a regular RMSD, using only heavy
atoms, is measured with respect to an α-helical structure. In this
case, the space was divided every 0.4 Å from 0 to 3.6 Å and
then a final partition covering the space [3.6,∞). Values and
coordinates for the references used to compute the order
parameters are given in the Supporting Information (SI).
The methane molecules were simulated using the GRO-

MACS 4.5 software package42 with the united-atom GROMOS
45a3 force field43 and dodecahedral periodic box of TIP3P
water molecules44 (about 900 water molecules in a 34 × 34 ×
24 Å box). van der Waals interactions were switched off
smoothly between 8 and 9 Å; real-space electrostatic
interactions were truncated at 10 Å. Long range electrostatic
interactions were calculated using particle mesh Ewald (PME)
summation. The single progress coordinate was the distance r
between the two methane molecules, following ref 28. The
coordinate r ∈ [0,∞) Å was partitioned with a bin spacing of 1
Å from 0 to 16 Å and a last bin covering the space r ∈ [16,∞)
Å.
For the post analysis of methane, different bins were used to

demonstrate the flexibility of the approach. The coordinate r ∈
[0,∞) Å was partitioned so that the first bin is the space r ∈
[0,5) Å, then a bin spacing of 2 Å was used from 5 to 17, while
the last bin covers the space r ∈ [17,∞) Å.
The results shown below include all data generated in all

trajectories: no transient or relaxation period has been omitted.

4. RESULTS

4.1. Ala4. For Ala4, populations and MFPTs are estimated
using WE and compared to independent measurements based
on ordinary “brute force” (BF) simulation. Rates are estimated
in both directions between the two sets of states A1,B1 and
A2,B2 shown in Figure 3 (see SI to visualize representative
structures). The second set is less populated and consequently
expected to be more difficult to sample. Figure 3 also shows the
bin definitions used in the post-analysis, which were the same
as those used during the WE simulation. However, as we shall
see in our second system, we can use any partition of the space
for the post analysis.
The data shown below are based on the same total

simulation times in BF and WE. The BF estimates and
confidence intervals are based on a single long trajectory of 3.0
μs where thousands of transitions between states were
observed. Five independent WE simulations were run, each
employing a total of 3.0 μs accounting for all the trajectories.
The use of independent WE runs permits straightforward error
analysis for comparison with BF.
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4.1.1. Direct Estimation of Observables via WE. As
described above, “direct” WE measurements sum trajectory
weights for population and flux calculations. Figures 4 and 5
show direct estimates for both equilibrium and kinetic
quantities for both sets of states. WE estimates as a function
of simulation time are compared to 95% confidence intervals
for BF simulation.

As with all observables, data from five independent WE
simulations are shown. The final/rightmost point from each
run is the estimate using all data from the run and thus is based
on a total simulation time equal to that of BF (3 μs). The
spread of the rightmost WE data points therefore can be
compared with the BF confidence interval to gauge statistical
quality.
The mean values of the direct estimates are in agreement

with BF confidence intervals in all cases. In some cases, the
spread of WE estimates is significantly less than that for BF
prior to the full extent of WE simulation. Each nanosecond of
“molecular time” in Figures 4 and 5 (i.e., single-trajectory time)
corresponds to approximately 200 ns of total simulation in a
single WE run accounting for all trajectories. Hence, in some
cases, considerably less WE simulation is required for an
estimate of the same statistical quality as resulted from the full
BF simulation of 3.0 μs.

4.1.2. Non-Markovian Matrix Analysis. We also show
results of the non-Markovian matrix analysis for select
observables. Figure 6 shows that the non-Markovian analysis
yields unbiased estimates of the same equilibrium and
nonequilibrium properties calculated with direct estimates.
(Results for other observables, like the population of A1 and
the A1→B1 MFPT, not shown, exhibit qualitatively similar
agreement.) The agreement contrasts with a purely Markovian
matrix formulation, which does not account for the “labeling”
described above, which can yield statistically biased estimates
for kinetic quantities (see methane results, below). Unbiased
matrix-based estimates are important when reweighting is used
in WE23 as noted in the Discussion. Reweighting was not used
in the present study, however.

4.2. Methane. In the methane system, WE simulation is
used to measure first-passage times based on a range of state
definitions. For a complex system, analyzing the sensitivity of
the MFPT to state definitions could aid in the definition of
states.

Figure 3. The Ala4 free energy surface. The surface is projected onto
two coordinates: D = ((1/N)∑idi

2)1/2 ∈ [0,180] from one reference
structure (see SI) and the RMSD with respect to an ideal α-helix. The
surface was computed using 3.0 μs of ordinary “brute force”
simulation. The set of states A1,B1 is highlighted in green, while the
second set A2,B2 is highlighted in red. The grid shows bins that were
used both for WE simulation and for the post-analysis calculation of
observables via the non-Markovian matrix formulation.

Figure 4. Direct WE estimates for populations and mean first passage times (MFPTs) for Ala4 states A1,B1 from Figure 3. Five independent WE
runs are shown, each based on 3.0 μs of total simulation time. Dashed lines indicate roughly a 95% confidence interval based on 3.0 μs of brute force
simulation. Each nanosecond of molecular (single-trajectory) time corresponds to approximately 200 ns of WE simulation including all trajectories in
a single run.
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The MFPT was estimated directly, as well as by both non-
Markovian and Markovian matrix analysis. To assess statistical
uncertainty, once again five independent WE simulations were
run. The bins used for post-analysis differ from those used in
the original WE simulation, as a matter of convenience
underscoring the flexibility of the approach.
Figure 7 shows passage times measured as a function of the

boundary position for the unbound state. The boundary of the
bound state A was held fixed at a separation of 5 Å while the
definition of the unbound state was varied from 5 to 17 Å. The
passage times were measured in increments of 2 Å and
compared with BF results as shown in Figure 7. The BF

confidence intervals are based on a single long trajectory of 0.4
μs, the same total simulation time used in each WE simulation.
Figure 7 shows that both direct and non-Markovian matrix

estimates are in agreement with BF confidence intervals.
For fixed state definitions, Figure 8 shows the evolution of

state populations MFPTs, as was done for Ala4. We fix the
movable boundary position in Figure 7 (inset), defining state B
as all configurations with r > 11 Å.
The performance of the non-Markovian matrix estimates are

particularly noteworthy in Figure 8. The matrix estimates
converge faster than direct estimates to the exact results for the
state populations. Presumably, this is because the direct
approach requires relaxation of the full probability distribution
to equilibrium, whereas the matrix approach requires only
relaxation of the distribution with each bin (in order to obtain
accurate interbin rates kij

μν).
In contrast to the unbiased MFPT estimates obtained by

both direct and non-Markovian analysis, the Markov analysis
can be significantly biased for the MFPT. Figure 9 shows that
applying the Markovian analysis (section 2.3) leads to MFPT
estimates clearly outside the BF confidence interval. Data in the
SI show that the use of a more sophisticated model such as a
maximum-likelihood estimator for reversible Markov models45

yields similar results and does not correct the bias.
Equilibrium properties, however, can be estimated without

bias in a Markovian analysis because history dependence is
immaterial. Figure 9 also illustrates correct (equilibrium)
population estimates based on the Markovian analysis.

5. DISCUSSION

To our knowledge, this is the first weighted ensemble (WE)
study using the original Huber and Kim algorithm5 to
simultaneously calculate both equilibrium and nonequilibrium
quantities. The present study estimates observables (popula-
tions and MFPTs) based on arbitrary states defined in a
postsimulation analysis, permitting the examination of different
state definitions and their effects on observables. Two
qualitatively different estimation schemes were examined,

Figure 5. Direct WE estimates for populations and mean first passage times for Ala4 states A2,B2 from Figure 3. Five independent WE runs are
shown, each based on 3.0 μs of total simulation time. Dashed lines indicate roughly a 95% confidence interval based on 3.0 μs of brute force
simulation. Each nanosecond of molecular time corresponds to approximately 200 ns of WE simulation accounting for all trajectories in a single run.

Figure 6. Population of A2 and mean first passage time for Ala4 from
A2 to B2, estimated by the non-Markovian matrix analysis of WE data.
Dashed lines indicate roughly a 95% confidence interval from brute
force simulation, as in Figures 4 and 5. The states are defined in Figure
3.
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including a non-Markovian rate-matrix formulation which
shows promise for reducing transient initial-state bias (a bias
which is intrinsic to direct estimation of observables based on
weights). Both schemes showed substantial efficiency gains for
some observables even in the test systems which appear to lack
significant energy barriers in their configurational landscapes.
All results were validated using independent “brute force”
simulations. Nevertheless, as described below, the present data
do point to further challenges likely to be exhibited by larger,
more complex systems.
Flexibility in State Choice. One key feature of the WE

implementation studied here is the ability to investigate a range

of state choices. As computer simulations tackle systems of
growing complexity, it seems increasingly unlikely that states
chosen prior to a study will prove physically or biochemically
relevant. Indeed, it is already the case that specialized
algorithms are invoked to identify physical states, separated
by the slowest time scales, from existing trajectories.46,47 With
WE simulation, as suggested by our methane data, one can
adjust state boundaries to minimize the sensitivity of rates to
those boundaries.
A possible concern with postsimulation state construction is

the need to store a potentially large set of coordinates to ensure
sufficient flexibility in post analysis. However, modern hardware

Figure 7. The mean first passage time for methane association (B to A) and dissociation (A to B) measured “directly” and from the non-Markovian
matrix analysis from WE simulation as a function of the boundary of state A. The inset displays the PMF along with the definitions of the unbound
and bound states, indicated by B and A, respectively. Dashed lines indicate roughly a 95% confidence interval based on 0.4 μs of brute force
simulation.

Figure 8. Methane association/dissociation observables. Direct and non-Markovian WE estimates for populations and mean first passage times
(MFPTs) are plotted vs molecular time. Five independent WE runs are shown, each based on 0.4 μs of total simulation time. Dashed lines indicate
roughly a 95% confidence interval based on 0.4 μs of brute force simulation. Each nanosecond of molecular time corresponds to approximately 80 ns
of WE simulation accounting for all trajectories in a single run. The bound state (A) is defined by distances less than 5 Å, and B is defined by
distances greater than 11 Å.
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should be sufficient for most cases of interest. As an illustration,
storage of {x,y,z} coordinates for 1000 heavy atoms in a WE
run of 1000 iterations using 1000 trajectories would require
∼10 GB.
Simultaneous Calculation of Nonequilibrium and

Equilibrium Observables. The estimation of both equili-
brium and kinetic properties from relatively short simulations is
an important goal of current methods development, including
for WE.24,29 Here, we have demonstrated as a “proof of
principle” that WE simulation can do this efficiently (compared
to brute force simulation), without bias, in parallel, and with
flexibility in defining states. Given the relatively fast time scales
(nanosecond scale) characterizing the present systems, it is
somewhat surprising that WE is better than brute-force
simulation for some of the observables and never worse.
Previous studies suggest that WE has the potential for greater
efficiency in more complex systems.27,28,48

Non-Markovian Behavior. Many of our results employ a
non-Markovian analysis. Once a configuration space is
discretized (e.g., bins in WE simulation), one expects in
general that transitions among such discrete regions will not be
Markovian. To take the simplest example, in a 1D system,
whether a trajectory enters a finite-width bin from the left or
right will affect the probability to make a transition in a given
direction. So generally, discretized systems are non-Markovian,
even when the underlying continuous dynamics are Markovian.
Reweighting and the Matrix Formulation. This study

compared estimation of equilibrium and nonequilibrium
observables using the original WE algorithm and via post-
analysis. As mentioned in the Introduction, the occasional
rescaling of weights to match an equilibrium or nonequilibrium
steady-state condition23 was not used to avoid any potential
complications.
Our data clearly show that a standard Markovian analysis of

WE simulation is inadequate (Figure 9), since WE bins typically
are not Markovian. Additional informationhistory depend-
ence, as embodied in the α/β labeling schemeis needed to
obtain unbiased results. Inclusion of history information in the

matrix analysis means it is intrinsically “non-Markovian”
regardless of the linear algebra employed.
Future work will incorporate the rate estimation and non-

Markovian matrix schemes developed here, as well as possibly
the simpler Markovian scheme shown in section 2.3. Our data
(Figure 8) suggest that these could be very successful in
bringing a WE simulation closer to a specified steady state. But
it is an open question whether reweighting simulations will
prove superior to the type of post-analysis suggested here.
Importantly, data presented here indicate that some rate
estimators could lead to biased estimates for populations,
which, in turn, would bias a reweighted simulation.
One practical future approach, suggested by the work of

Darve and co-workers,49 could be to define preliminary states in
advance to aid sampling transitions in both directions and then
to subject the data to the same post analysis performed here to
examine additional state definitions besides the initial choices.

Limitations and Future Work. The present study has not
addressed some of the intrinsic limitations of the WE approach,
which are the related issues of correlations among trajectories
(due to the replication and merging events) and sampling
“orthogonal” coordinates not divided up by WE bins. In the
systems examined here, there was sufficient sampling in
orthogonal dimensions to obtain excellent agreement with
brute force results in all cases. However, significant future effort
will be required to address correlations and orthogonal
sampling, the latter being a problem common to methods
which preselect coordinates such as multiple-window umbrella
sampling36,50,51 and metadynamics.52−54

6. CONCLUSIONS

In this proof-of-principle study, the parallel weighted ensemble
(WE) approach has been applied to measure equilibrium and
kinetic properties from a single simulation in small but
nontrivial molecular systems. Importantly, populations and
rates could be measured for arbitrary states chosen after the
simulation. For all tested observables, unbiased estimates were
obtained, as validated by independent brute-force simulations.

Figure 9. Populations of A (r < 5 Å) and B (r > 11 Å) and MFPTs for the methane system, estimated by the non-Markovian matrix analysis and the
Markovian analysis without history information. Dashed lines indicate roughly a 95% confidence interval from brute force simulation based on 0.4 μs
of total simulation time.
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In a number of instances, WE was significantly more efficient
yielding estimates of a given statistical quality in less overall
computing time compared to simple simulation, including all
trajectories. In this sense, not only is WE a parallel method but
it can exhibit “super-linear scaling;” e.g., 100 cores can yield
desired information more than 100 times faster than single-core
simulation.
We also developed a non-Markovian matrix approach for

analyzing WE or brute-force trajectories, capable of yielding
unbiased results, sometimes faster than direct estimates of
observables from WE. The non-Markovian formulation also
yields simultaneous estimates of equilibrium and nonequili-
brium observables based on an arbitrary division of phase space,
which is not possible in a standard Markovian analysis.
The approaches tested here will need to be further developed

and tested in more complex systems.
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